Metamath Proof Explorer


Theorem brssr

Description: The subset relation and subclass relationship ( df-ss ) are the same, that is, ( AS B <-> A C B ) when B is a set. (Contributed by Peter Mazsa, 31-Jul-2019)

Ref Expression
Assertion brssr ( 𝐵𝑉 → ( 𝐴 S 𝐵𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 relssr Rel S
2 1 brrelex1i ( 𝐴 S 𝐵𝐴 ∈ V )
3 2 adantl ( ( 𝐵𝑉𝐴 S 𝐵 ) → 𝐴 ∈ V )
4 simpl ( ( 𝐵𝑉𝐴 S 𝐵 ) → 𝐵𝑉 )
5 3 4 jca ( ( 𝐵𝑉𝐴 S 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵𝑉 ) )
6 ssexg ( ( 𝐴𝐵𝐵𝑉 ) → 𝐴 ∈ V )
7 simpr ( ( 𝐴𝐵𝐵𝑉 ) → 𝐵𝑉 )
8 6 7 jca ( ( 𝐴𝐵𝐵𝑉 ) → ( 𝐴 ∈ V ∧ 𝐵𝑉 ) )
9 8 ancoms ( ( 𝐵𝑉𝐴𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵𝑉 ) )
10 sseq1 ( 𝑥 = 𝐴 → ( 𝑥𝑦𝐴𝑦 ) )
11 sseq2 ( 𝑦 = 𝐵 → ( 𝐴𝑦𝐴𝐵 ) )
12 df-ssr S = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥𝑦 }
13 10 11 12 brabg ( ( 𝐴 ∈ V ∧ 𝐵𝑉 ) → ( 𝐴 S 𝐵𝐴𝐵 ) )
14 5 9 13 pm5.21nd ( 𝐵𝑉 → ( 𝐴 S 𝐵𝐴𝐵 ) )