Step |
Hyp |
Ref |
Expression |
1 |
|
relssr |
⊢ Rel S |
2 |
1
|
brrelex1i |
⊢ ( 𝐴 S 𝐵 → 𝐴 ∈ V ) |
3 |
2
|
adantl |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 S 𝐵 ) → 𝐴 ∈ V ) |
4 |
|
simpl |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 S 𝐵 ) → 𝐵 ∈ 𝑉 ) |
5 |
3 4
|
jca |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 S 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) ) |
6 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ V ) |
7 |
|
simpr |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ 𝑉 ) |
8 |
6 7
|
jca |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) ) |
9 |
8
|
ancoms |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) ) |
10 |
|
sseq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝑦 ) ) |
11 |
|
sseq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝐵 ) ) |
12 |
|
df-ssr |
⊢ S = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ⊆ 𝑦 } |
13 |
10 11 12
|
brabg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |
14 |
5 9 13
|
pm5.21nd |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |