Metamath Proof Explorer


Theorem dfsymrels2

Description: Alternate definition of the class of symmetric relations. Cf. the comment of dfrefrels2 . (Contributed by Peter Mazsa, 20-Jul-2019)

Ref Expression
Assertion dfsymrels2 SymRels = { 𝑟 ∈ Rels ∣ 𝑟𝑟 }

Proof

Step Hyp Ref Expression
1 df-symrels SymRels = ( Syms ∩ Rels )
2 df-syms Syms = { 𝑟 ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) S ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) }
3 inex1g ( 𝑟 ∈ V → ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ∈ V )
4 3 elv ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ∈ V
5 brssr ( ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ∈ V → ( ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) S ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ↔ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ) )
6 4 5 ax-mp ( ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) S ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ↔ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) )
7 elrels6 ( 𝑟 ∈ V → ( 𝑟 ∈ Rels ↔ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) = 𝑟 ) )
8 7 elv ( 𝑟 ∈ Rels ↔ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) = 𝑟 )
9 8 biimpi ( 𝑟 ∈ Rels → ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) = 𝑟 )
10 9 cnveqd ( 𝑟 ∈ Rels → ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) = 𝑟 )
11 10 9 sseq12d ( 𝑟 ∈ Rels → ( ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ↔ 𝑟𝑟 ) )
12 6 11 syl5bb ( 𝑟 ∈ Rels → ( ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) S ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ↔ 𝑟𝑟 ) )
13 1 2 12 abeqinbi SymRels = { 𝑟 ∈ Rels ∣ 𝑟𝑟 }