Description: Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 22-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfsymrels3 | ⊢ SymRels = { 𝑟 ∈ Rels ∣ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑟 𝑦 → 𝑦 𝑟 𝑥 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsymrels2 | ⊢ SymRels = { 𝑟 ∈ Rels ∣ ◡ 𝑟 ⊆ 𝑟 } | |
| 2 | cnvsym | ⊢ ( ◡ 𝑟 ⊆ 𝑟 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑟 𝑦 → 𝑦 𝑟 𝑥 ) ) | |
| 3 | 1 2 | rabbieq | ⊢ SymRels = { 𝑟 ∈ Rels ∣ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑟 𝑦 → 𝑦 𝑟 𝑥 ) } |