Step |
Hyp |
Ref |
Expression |
1 |
|
df-symrels |
|- SymRels = ( Syms i^i Rels ) |
2 |
|
df-syms |
|- Syms = { r | `' ( r i^i ( dom r X. ran r ) ) _S ( r i^i ( dom r X. ran r ) ) } |
3 |
|
inex1g |
|- ( r e. _V -> ( r i^i ( dom r X. ran r ) ) e. _V ) |
4 |
3
|
elv |
|- ( r i^i ( dom r X. ran r ) ) e. _V |
5 |
|
brssr |
|- ( ( r i^i ( dom r X. ran r ) ) e. _V -> ( `' ( r i^i ( dom r X. ran r ) ) _S ( r i^i ( dom r X. ran r ) ) <-> `' ( r i^i ( dom r X. ran r ) ) C_ ( r i^i ( dom r X. ran r ) ) ) ) |
6 |
4 5
|
ax-mp |
|- ( `' ( r i^i ( dom r X. ran r ) ) _S ( r i^i ( dom r X. ran r ) ) <-> `' ( r i^i ( dom r X. ran r ) ) C_ ( r i^i ( dom r X. ran r ) ) ) |
7 |
|
elrels6 |
|- ( r e. _V -> ( r e. Rels <-> ( r i^i ( dom r X. ran r ) ) = r ) ) |
8 |
7
|
elv |
|- ( r e. Rels <-> ( r i^i ( dom r X. ran r ) ) = r ) |
9 |
8
|
biimpi |
|- ( r e. Rels -> ( r i^i ( dom r X. ran r ) ) = r ) |
10 |
9
|
cnveqd |
|- ( r e. Rels -> `' ( r i^i ( dom r X. ran r ) ) = `' r ) |
11 |
10 9
|
sseq12d |
|- ( r e. Rels -> ( `' ( r i^i ( dom r X. ran r ) ) C_ ( r i^i ( dom r X. ran r ) ) <-> `' r C_ r ) ) |
12 |
6 11
|
syl5bb |
|- ( r e. Rels -> ( `' ( r i^i ( dom r X. ran r ) ) _S ( r i^i ( dom r X. ran r ) ) <-> `' r C_ r ) ) |
13 |
1 2 12
|
abeqinbi |
|- SymRels = { r e. Rels | `' r C_ r } |