Metamath Proof Explorer


Theorem abeqinbi

Description: Intersection with class abstraction and equivalent wff's. (Contributed by Peter Mazsa, 21-Jul-2021)

Ref Expression
Hypotheses abeqinbi.1
|- A = ( B i^i C )
abeqinbi.2
|- B = { x | ph }
abeqinbi.3
|- ( x e. C -> ( ph <-> ps ) )
Assertion abeqinbi
|- A = { x e. C | ps }

Proof

Step Hyp Ref Expression
1 abeqinbi.1
 |-  A = ( B i^i C )
2 abeqinbi.2
 |-  B = { x | ph }
3 abeqinbi.3
 |-  ( x e. C -> ( ph <-> ps ) )
4 1 2 abeqin
 |-  A = { x e. C | ph }
5 4 3 rabimbieq
 |-  A = { x e. C | ps }