Metamath Proof Explorer


Theorem rabimbieq

Description: Restricted equivalent wff's correspond to restricted class abstractions which are equal with the same class. (Contributed by Peter Mazsa, 22-Jul-2021)

Ref Expression
Hypotheses rabimbieq.1
|- B = { x e. A | ph }
rabimbieq.2
|- ( x e. A -> ( ph <-> ps ) )
Assertion rabimbieq
|- B = { x e. A | ps }

Proof

Step Hyp Ref Expression
1 rabimbieq.1
 |-  B = { x e. A | ph }
2 rabimbieq.2
 |-  ( x e. A -> ( ph <-> ps ) )
3 2 rabbiia
 |-  { x e. A | ph } = { x e. A | ps }
4 1 3 eqtri
 |-  B = { x e. A | ps }