Metamath Proof Explorer


Theorem abeqin

Description: Intersection with class abstraction. (Contributed by Peter Mazsa, 21-Jul-2021)

Ref Expression
Hypotheses abeqin.1
|- A = ( B i^i C )
abeqin.2
|- B = { x | ph }
Assertion abeqin
|- A = { x e. C | ph }

Proof

Step Hyp Ref Expression
1 abeqin.1
 |-  A = ( B i^i C )
2 abeqin.2
 |-  B = { x | ph }
3 2 ineq1i
 |-  ( B i^i C ) = ( { x | ph } i^i C )
4 dfrab2
 |-  { x e. C | ph } = ( { x | ph } i^i C )
5 3 1 4 3eqtr4i
 |-  A = { x e. C | ph }