Metamath Proof Explorer


Definition df-syms

Description: Define the class of all symmetric sets. It is used only by df-symrels .

Note the similarity of Definitions df-refs , df-syms and df-trs , cf. the comment of dfrefrels2 . (Contributed by Peter Mazsa, 19-Jul-2019)

Ref Expression
Assertion df-syms
|- Syms = { x | `' ( x i^i ( dom x X. ran x ) ) _S ( x i^i ( dom x X. ran x ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 csyms
 |-  Syms
1 vx
 |-  x
2 1 cv
 |-  x
3 2 cdm
 |-  dom x
4 2 crn
 |-  ran x
5 3 4 cxp
 |-  ( dom x X. ran x )
6 2 5 cin
 |-  ( x i^i ( dom x X. ran x ) )
7 6 ccnv
 |-  `' ( x i^i ( dom x X. ran x ) )
8 cssr
 |-  _S
9 7 6 8 wbr
 |-  `' ( x i^i ( dom x X. ran x ) ) _S ( x i^i ( dom x X. ran x ) )
10 9 1 cab
 |-  { x | `' ( x i^i ( dom x X. ran x ) ) _S ( x i^i ( dom x X. ran x ) ) }
11 0 10 wceq
 |-  Syms = { x | `' ( x i^i ( dom x X. ran x ) ) _S ( x i^i ( dom x X. ran x ) ) }