Metamath Proof Explorer


Definition df-refs

Description: Define the class of all reflexive sets. It is used only by df-refrels . We use subset relation _S ( df-ssr ) here to be able to define converse reflexivity ( df-cnvrefs ), see also the comment of df-ssr . The elements of this class are not necessarily relations (versus df-refrels ).

Note the similarity of Definitions df-refs , df-syms and df-trs , cf. comments of dfrefrels2 . (Contributed by Peter Mazsa, 19-Jul-2019)

Ref Expression
Assertion df-refs
|- Refs = { x | ( _I i^i ( dom x X. ran x ) ) _S ( x i^i ( dom x X. ran x ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 crefs
 |-  Refs
1 vx
 |-  x
2 cid
 |-  _I
3 1 cv
 |-  x
4 3 cdm
 |-  dom x
5 3 crn
 |-  ran x
6 4 5 cxp
 |-  ( dom x X. ran x )
7 2 6 cin
 |-  ( _I i^i ( dom x X. ran x ) )
8 cssr
 |-  _S
9 3 6 cin
 |-  ( x i^i ( dom x X. ran x ) )
10 7 9 8 wbr
 |-  ( _I i^i ( dom x X. ran x ) ) _S ( x i^i ( dom x X. ran x ) )
11 10 1 cab
 |-  { x | ( _I i^i ( dom x X. ran x ) ) _S ( x i^i ( dom x X. ran x ) ) }
12 0 11 wceq
 |-  Refs = { x | ( _I i^i ( dom x X. ran x ) ) _S ( x i^i ( dom x X. ran x ) ) }