Description: Define the class of all reflexive sets. It is used only by df-refrels . We use subset relation _S ( df-ssr ) here to be able to define converse reflexivity ( df-cnvrefs ), see also the comment of df-ssr . The elements of this class are not necessarily relations (versus df-refrels ).
Note the similarity of Definitions df-refs , df-syms and df-trs , cf. comments of dfrefrels2 . (Contributed by Peter Mazsa, 19-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | df-refs | |- Refs = { x | ( _I i^i ( dom x X. ran x ) ) _S ( x i^i ( dom x X. ran x ) ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | crefs | |- Refs |
|
1 | vx | |- x |
|
2 | cid | |- _I |
|
3 | 1 | cv | |- x |
4 | 3 | cdm | |- dom x |
5 | 3 | crn | |- ran x |
6 | 4 5 | cxp | |- ( dom x X. ran x ) |
7 | 2 6 | cin | |- ( _I i^i ( dom x X. ran x ) ) |
8 | cssr | |- _S |
|
9 | 3 6 | cin | |- ( x i^i ( dom x X. ran x ) ) |
10 | 7 9 8 | wbr | |- ( _I i^i ( dom x X. ran x ) ) _S ( x i^i ( dom x X. ran x ) ) |
11 | 10 1 | cab | |- { x | ( _I i^i ( dom x X. ran x ) ) _S ( x i^i ( dom x X. ran x ) ) } |
12 | 0 11 | wceq | |- Refs = { x | ( _I i^i ( dom x X. ran x ) ) _S ( x i^i ( dom x X. ran x ) ) } |