Description: Define the class of all reflexive sets. It is used only by df-refrels . We use subset relation _S ( df-ssr ) here to be able to define converse reflexivity ( df-cnvrefs ), see also the comment of df-ssr . The elements of this class are not necessarily relations (versus df-refrels ).
Note the similarity of Definitions df-refs , df-syms and df-trs , cf. comments of dfrefrels2 . (Contributed by Peter Mazsa, 19-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | df-refs | ⊢ Refs = { 𝑥 ∣ ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) S ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | crefs | ⊢ Refs | |
1 | vx | ⊢ 𝑥 | |
2 | cid | ⊢ I | |
3 | 1 | cv | ⊢ 𝑥 |
4 | 3 | cdm | ⊢ dom 𝑥 |
5 | 3 | crn | ⊢ ran 𝑥 |
6 | 4 5 | cxp | ⊢ ( dom 𝑥 × ran 𝑥 ) |
7 | 2 6 | cin | ⊢ ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) |
8 | cssr | ⊢ S | |
9 | 3 6 | cin | ⊢ ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) ) |
10 | 7 9 8 | wbr | ⊢ ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) S ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) ) |
11 | 10 1 | cab | ⊢ { 𝑥 ∣ ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) S ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) ) } |
12 | 0 11 | wceq | ⊢ Refs = { 𝑥 ∣ ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) S ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) ) } |