Metamath Proof Explorer


Definition df-refs

Description: Define the class of all reflexive sets. It is used only by df-refrels . We use subset relation _S ( df-ssr ) here to be able to define converse reflexivity ( df-cnvrefs ), see also the comment of df-ssr . The elements of this class are not necessarily relations (versus df-refrels ).

Note the similarity of Definitions df-refs , df-syms and df-trs , cf. comments of dfrefrels2 . (Contributed by Peter Mazsa, 19-Jul-2019)

Ref Expression
Assertion df-refs Refs = { 𝑥 ∣ ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) S ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 crefs Refs
1 vx 𝑥
2 cid I
3 1 cv 𝑥
4 3 cdm dom 𝑥
5 3 crn ran 𝑥
6 4 5 cxp ( dom 𝑥 × ran 𝑥 )
7 2 6 cin ( I ∩ ( dom 𝑥 × ran 𝑥 ) )
8 cssr S
9 3 6 cin ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) )
10 7 9 8 wbr ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) S ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) )
11 10 1 cab { 𝑥 ∣ ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) S ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) ) }
12 0 11 wceq Refs = { 𝑥 ∣ ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) S ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) ) }