Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Reflexivity
df-refs
Metamath Proof Explorer
Description: Define the class of all reflexive sets. It is used only by df-refrels .
We use subset relation _S ( df-ssr ) here to be able to define
converse reflexivity ( df-cnvrefs ), see also the comment of df-ssr .
The elements of this class are not necessarily relations (versus
df-refrels ).
Note the similarity of Definitions df-refs , df-syms and df-trs ,
cf. comments of dfrefrels2 . (Contributed by Peter Mazsa , 19-Jul-2019)
Ref
Expression
Assertion
df-refs
⊢ Refs = x | I ∩ dom ⁡ x × ran ⁡ x S x ∩ dom ⁡ x × ran ⁡ x
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
crefs
class Refs
1
vx
setvar x
2
cid
class I
3
1
cv
setvar x
4
3
cdm
class dom ⁡ x
5
3
crn
class ran ⁡ x
6
4 5
cxp
class dom ⁡ x × ran ⁡ x
7
2 6
cin
class I ∩ dom ⁡ x × ran ⁡ x
8
cssr
class S
9
3 6
cin
class x ∩ dom ⁡ x × ran ⁡ x
10
7 9 8
wbr
wff I ∩ dom ⁡ x × ran ⁡ x S x ∩ dom ⁡ x × ran ⁡ x
11
10 1
cab
class x | I ∩ dom ⁡ x × ran ⁡ x S x ∩ dom ⁡ x × ran ⁡ x
12
0 11
wceq
wff Refs = x | I ∩ dom ⁡ x × ran ⁡ x S x ∩ dom ⁡ x × ran ⁡ x