Description: Define the class of all converse reflexive sets, see the comment of df-ssr . It is used only by df-cnvrefrels . (Contributed by Peter Mazsa, 22-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | df-cnvrefs | ⊢ CnvRefs = { 𝑥 ∣ ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) ◡ S ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ccnvrefs | ⊢ CnvRefs | |
1 | vx | ⊢ 𝑥 | |
2 | cid | ⊢ I | |
3 | 1 | cv | ⊢ 𝑥 |
4 | 3 | cdm | ⊢ dom 𝑥 |
5 | 3 | crn | ⊢ ran 𝑥 |
6 | 4 5 | cxp | ⊢ ( dom 𝑥 × ran 𝑥 ) |
7 | 2 6 | cin | ⊢ ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) |
8 | cssr | ⊢ S | |
9 | 8 | ccnv | ⊢ ◡ S |
10 | 3 6 | cin | ⊢ ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) ) |
11 | 7 10 9 | wbr | ⊢ ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) ◡ S ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) ) |
12 | 11 1 | cab | ⊢ { 𝑥 ∣ ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) ◡ S ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) ) } |
13 | 0 12 | wceq | ⊢ CnvRefs = { 𝑥 ∣ ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) ◡ S ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) ) } |