Metamath Proof Explorer


Definition df-cnvrefs

Description: Define the class of all converse reflexive sets, see the comment of df-ssr . It is used only by df-cnvrefrels . (Contributed by Peter Mazsa, 22-Jul-2019)

Ref Expression
Assertion df-cnvrefs CnvRefs = { 𝑥 ∣ ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) S ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccnvrefs CnvRefs
1 vx 𝑥
2 cid I
3 1 cv 𝑥
4 3 cdm dom 𝑥
5 3 crn ran 𝑥
6 4 5 cxp ( dom 𝑥 × ran 𝑥 )
7 2 6 cin ( I ∩ ( dom 𝑥 × ran 𝑥 ) )
8 cssr S
9 8 ccnv S
10 3 6 cin ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) )
11 7 10 9 wbr ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) S ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) )
12 11 1 cab { 𝑥 ∣ ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) S ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) ) }
13 0 12 wceq CnvRefs = { 𝑥 ∣ ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) S ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) ) }