Metamath Proof Explorer


Definition df-trs

Description: Define the class of all transitive sets (versus the transitive class defined in df-tr ). It is used only by df-trrels .

Note the similarity of the definitions of df-refs , df-syms and df-trs . (Contributed by Peter Mazsa, 17-Jul-2021)

Ref Expression
Assertion df-trs
|- Trs = { x | ( ( x i^i ( dom x X. ran x ) ) o. ( x i^i ( dom x X. ran x ) ) ) _S ( x i^i ( dom x X. ran x ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctrs
 |-  Trs
1 vx
 |-  x
2 1 cv
 |-  x
3 2 cdm
 |-  dom x
4 2 crn
 |-  ran x
5 3 4 cxp
 |-  ( dom x X. ran x )
6 2 5 cin
 |-  ( x i^i ( dom x X. ran x ) )
7 6 6 ccom
 |-  ( ( x i^i ( dom x X. ran x ) ) o. ( x i^i ( dom x X. ran x ) ) )
8 cssr
 |-  _S
9 7 6 8 wbr
 |-  ( ( x i^i ( dom x X. ran x ) ) o. ( x i^i ( dom x X. ran x ) ) ) _S ( x i^i ( dom x X. ran x ) )
10 9 1 cab
 |-  { x | ( ( x i^i ( dom x X. ran x ) ) o. ( x i^i ( dom x X. ran x ) ) ) _S ( x i^i ( dom x X. ran x ) ) }
11 0 10 wceq
 |-  Trs = { x | ( ( x i^i ( dom x X. ran x ) ) o. ( x i^i ( dom x X. ran x ) ) ) _S ( x i^i ( dom x X. ran x ) ) }