Description: Define the class of all transitive sets (versus the transitive class defined in df-tr ). It is used only by df-trrels .
Note the similarity of the definitions of df-refs , df-syms and df-trs . (Contributed by Peter Mazsa, 17-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | df-trs | |- Trs = { x | ( ( x i^i ( dom x X. ran x ) ) o. ( x i^i ( dom x X. ran x ) ) ) _S ( x i^i ( dom x X. ran x ) ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ctrs | |- Trs |
|
1 | vx | |- x |
|
2 | 1 | cv | |- x |
3 | 2 | cdm | |- dom x |
4 | 2 | crn | |- ran x |
5 | 3 4 | cxp | |- ( dom x X. ran x ) |
6 | 2 5 | cin | |- ( x i^i ( dom x X. ran x ) ) |
7 | 6 6 | ccom | |- ( ( x i^i ( dom x X. ran x ) ) o. ( x i^i ( dom x X. ran x ) ) ) |
8 | cssr | |- _S |
|
9 | 7 6 8 | wbr | |- ( ( x i^i ( dom x X. ran x ) ) o. ( x i^i ( dom x X. ran x ) ) ) _S ( x i^i ( dom x X. ran x ) ) |
10 | 9 1 | cab | |- { x | ( ( x i^i ( dom x X. ran x ) ) o. ( x i^i ( dom x X. ran x ) ) ) _S ( x i^i ( dom x X. ran x ) ) } |
11 | 0 10 | wceq | |- Trs = { x | ( ( x i^i ( dom x X. ran x ) ) o. ( x i^i ( dom x X. ran x ) ) ) _S ( x i^i ( dom x X. ran x ) ) } |