Metamath Proof Explorer


Theorem elsymrelsrel

Description: For sets, being an element of the class of symmetric relations ( df-symrels ) is equivalent to satisfying the symmetric relation predicate. (Contributed by Peter Mazsa, 17-Aug-2021)

Ref Expression
Assertion elsymrelsrel R V R SymRels SymRel R

Proof

Step Hyp Ref Expression
1 elrelsrel R V R Rels Rel R
2 1 anbi2d R V R -1 R R Rels R -1 R Rel R
3 elsymrels2 R SymRels R -1 R R Rels
4 dfsymrel2 SymRel R R -1 R Rel R
5 2 3 4 3bitr4g R V R SymRels SymRel R