Description: For sets, being an element of the class of symmetric relations ( df-symrels ) is equivalent to satisfying the symmetric relation predicate. (Contributed by Peter Mazsa, 17-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | elsymrelsrel | |- ( R e. V -> ( R e. SymRels <-> SymRel R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrelsrel | |- ( R e. V -> ( R e. Rels <-> Rel R ) ) |
|
2 | 1 | anbi2d | |- ( R e. V -> ( ( `' R C_ R /\ R e. Rels ) <-> ( `' R C_ R /\ Rel R ) ) ) |
3 | elsymrels2 | |- ( R e. SymRels <-> ( `' R C_ R /\ R e. Rels ) ) |
|
4 | dfsymrel2 | |- ( SymRel R <-> ( `' R C_ R /\ Rel R ) ) |
|
5 | 2 3 4 | 3bitr4g | |- ( R e. V -> ( R e. SymRels <-> SymRel R ) ) |