Metamath Proof Explorer


Theorem elsymrelsrel

Description: For sets, being an element of the class of symmetric relations ( df-symrels ) is equivalent to satisfying the symmetric relation predicate. (Contributed by Peter Mazsa, 17-Aug-2021)

Ref Expression
Assertion elsymrelsrel
|- ( R e. V -> ( R e. SymRels <-> SymRel R ) )

Proof

Step Hyp Ref Expression
1 elrelsrel
 |-  ( R e. V -> ( R e. Rels <-> Rel R ) )
2 1 anbi2d
 |-  ( R e. V -> ( ( `' R C_ R /\ R e. Rels ) <-> ( `' R C_ R /\ Rel R ) ) )
3 elsymrels2
 |-  ( R e. SymRels <-> ( `' R C_ R /\ R e. Rels ) )
4 dfsymrel2
 |-  ( SymRel R <-> ( `' R C_ R /\ Rel R ) )
5 2 3 4 3bitr4g
 |-  ( R e. V -> ( R e. SymRels <-> SymRel R ) )