Description: Equality theorem for symmetric relation. (Contributed by Peter Mazsa, 15-Apr-2019) (Revised by Peter Mazsa, 23-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | symreleq | |- ( R = S -> ( SymRel R <-> SymRel S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveq | |- ( R = S -> `' R = `' S ) |
|
| 2 | id | |- ( R = S -> R = S ) |
|
| 3 | 1 2 | sseq12d | |- ( R = S -> ( `' R C_ R <-> `' S C_ S ) ) |
| 4 | releq | |- ( R = S -> ( Rel R <-> Rel S ) ) |
|
| 5 | 3 4 | anbi12d | |- ( R = S -> ( ( `' R C_ R /\ Rel R ) <-> ( `' S C_ S /\ Rel S ) ) ) |
| 6 | dfsymrel2 | |- ( SymRel R <-> ( `' R C_ R /\ Rel R ) ) |
|
| 7 | dfsymrel2 | |- ( SymRel S <-> ( `' S C_ S /\ Rel S ) ) |
|
| 8 | 5 6 7 | 3bitr4g | |- ( R = S -> ( SymRel R <-> SymRel S ) ) |