Metamath Proof Explorer


Theorem symreleq

Description: Equality theorem for symmetric relation. (Contributed by Peter Mazsa, 15-Apr-2019) (Revised by Peter Mazsa, 23-Sep-2021)

Ref Expression
Assertion symreleq R = S SymRel R SymRel S

Proof

Step Hyp Ref Expression
1 cnveq R = S R -1 = S -1
2 id R = S R = S
3 1 2 sseq12d R = S R -1 R S -1 S
4 releq R = S Rel R Rel S
5 3 4 anbi12d R = S R -1 R Rel R S -1 S Rel S
6 dfsymrel2 SymRel R R -1 R Rel R
7 dfsymrel2 SymRel S S -1 S Rel S
8 5 6 7 3bitr4g R = S SymRel R SymRel S