Metamath Proof Explorer


Theorem dfsymrel2

Description: Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 19-Apr-2019) (Revised by Peter Mazsa, 17-Aug-2021)

Ref Expression
Assertion dfsymrel2 SymRel R R -1 R Rel R

Proof

Step Hyp Ref Expression
1 df-symrel SymRel R R dom R × ran R -1 R dom R × ran R Rel R
2 dfrel6 Rel R R dom R × ran R = R
3 2 biimpi Rel R R dom R × ran R = R
4 3 cnveqd Rel R R dom R × ran R -1 = R -1
5 4 3 sseq12d Rel R R dom R × ran R -1 R dom R × ran R R -1 R
6 5 pm5.32ri R dom R × ran R -1 R dom R × ran R Rel R R -1 R Rel R
7 1 6 bitri SymRel R R -1 R Rel R