Step |
Hyp |
Ref |
Expression |
1 |
|
df-symrel |
⊢ ( SymRel 𝑅 ↔ ( ◡ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ Rel 𝑅 ) ) |
2 |
|
dfrel6 |
⊢ ( Rel 𝑅 ↔ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) = 𝑅 ) |
3 |
2
|
biimpi |
⊢ ( Rel 𝑅 → ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) = 𝑅 ) |
4 |
3
|
cnveqd |
⊢ ( Rel 𝑅 → ◡ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) = ◡ 𝑅 ) |
5 |
4 3
|
sseq12d |
⊢ ( Rel 𝑅 → ( ◡ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ↔ ◡ 𝑅 ⊆ 𝑅 ) ) |
6 |
5
|
pm5.32ri |
⊢ ( ( ◡ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ Rel 𝑅 ) ↔ ( ◡ 𝑅 ⊆ 𝑅 ∧ Rel 𝑅 ) ) |
7 |
1 6
|
bitri |
⊢ ( SymRel 𝑅 ↔ ( ◡ 𝑅 ⊆ 𝑅 ∧ Rel 𝑅 ) ) |