Description: Alternate definition of the relation predicate. (Contributed by Peter Mazsa, 14-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | dfrel6 | ⊢ ( Rel 𝑅 ↔ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) = 𝑅 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrel5 | ⊢ ( Rel 𝑅 ↔ ( 𝑅 ↾ dom 𝑅 ) = 𝑅 ) | |
2 | dfres3 | ⊢ ( 𝑅 ↾ dom 𝑅 ) = ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) | |
3 | 2 | eqeq1i | ⊢ ( ( 𝑅 ↾ dom 𝑅 ) = 𝑅 ↔ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) = 𝑅 ) |
4 | 1 3 | bitri | ⊢ ( Rel 𝑅 ↔ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) = 𝑅 ) |