Metamath Proof Explorer


Theorem dfrel6

Description: Alternate definition of the relation predicate. (Contributed by Peter Mazsa, 14-Mar-2019)

Ref Expression
Assertion dfrel6 ( Rel 𝑅 ↔ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) = 𝑅 )

Proof

Step Hyp Ref Expression
1 dfrel5 ( Rel 𝑅 ↔ ( 𝑅 ↾ dom 𝑅 ) = 𝑅 )
2 dfres3 ( 𝑅 ↾ dom 𝑅 ) = ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) )
3 2 eqeq1i ( ( 𝑅 ↾ dom 𝑅 ) = 𝑅 ↔ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) = 𝑅 )
4 1 3 bitri ( Rel 𝑅 ↔ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) = 𝑅 )