Metamath Proof Explorer


Theorem dfrel5

Description: Alternate definition of the relation predicate. (Contributed by Peter Mazsa, 6-Nov-2018)

Ref Expression
Assertion dfrel5 ( Rel 𝑅 ↔ ( 𝑅 ↾ dom 𝑅 ) = 𝑅 )

Proof

Step Hyp Ref Expression
1 dfrel2 ( Rel 𝑅 𝑅 = 𝑅 )
2 resdm2 ( 𝑅 ↾ dom 𝑅 ) = 𝑅
3 2 eqeq1i ( ( 𝑅 ↾ dom 𝑅 ) = 𝑅 𝑅 = 𝑅 )
4 1 3 bitr4i ( Rel 𝑅 ↔ ( 𝑅 ↾ dom 𝑅 ) = 𝑅 )