Description: Alternate definition of the relation predicate. (Contributed by Peter Mazsa, 6-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfrel5 | ⊢ ( Rel 𝑅 ↔ ( 𝑅 ↾ dom 𝑅 ) = 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrel2 | ⊢ ( Rel 𝑅 ↔ ◡ ◡ 𝑅 = 𝑅 ) | |
| 2 | resdm2 | ⊢ ( 𝑅 ↾ dom 𝑅 ) = ◡ ◡ 𝑅 | |
| 3 | 2 | eqeq1i | ⊢ ( ( 𝑅 ↾ dom 𝑅 ) = 𝑅 ↔ ◡ ◡ 𝑅 = 𝑅 ) |
| 4 | 1 3 | bitr4i | ⊢ ( Rel 𝑅 ↔ ( 𝑅 ↾ dom 𝑅 ) = 𝑅 ) |