Description: Alternate definition of the relation predicate. (Contributed by Peter Mazsa, 14-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | dfrel6 | |- ( Rel R <-> ( R i^i ( dom R X. ran R ) ) = R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrel5 | |- ( Rel R <-> ( R |` dom R ) = R ) |
|
2 | dfres3 | |- ( R |` dom R ) = ( R i^i ( dom R X. ran R ) ) |
|
3 | 2 | eqeq1i | |- ( ( R |` dom R ) = R <-> ( R i^i ( dom R X. ran R ) ) = R ) |
4 | 1 3 | bitri | |- ( Rel R <-> ( R i^i ( dom R X. ran R ) ) = R ) |