| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-symrel |
|- ( SymRel R <-> ( `' ( R i^i ( dom R X. ran R ) ) C_ ( R i^i ( dom R X. ran R ) ) /\ Rel R ) ) |
| 2 |
|
dfrel6 |
|- ( Rel R <-> ( R i^i ( dom R X. ran R ) ) = R ) |
| 3 |
2
|
biimpi |
|- ( Rel R -> ( R i^i ( dom R X. ran R ) ) = R ) |
| 4 |
3
|
cnveqd |
|- ( Rel R -> `' ( R i^i ( dom R X. ran R ) ) = `' R ) |
| 5 |
4 3
|
sseq12d |
|- ( Rel R -> ( `' ( R i^i ( dom R X. ran R ) ) C_ ( R i^i ( dom R X. ran R ) ) <-> `' R C_ R ) ) |
| 6 |
5
|
pm5.32ri |
|- ( ( `' ( R i^i ( dom R X. ran R ) ) C_ ( R i^i ( dom R X. ran R ) ) /\ Rel R ) <-> ( `' R C_ R /\ Rel R ) ) |
| 7 |
1 6
|
bitri |
|- ( SymRel R <-> ( `' R C_ R /\ Rel R ) ) |