Metamath Proof Explorer


Theorem dfsymrel3

Description: Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 21-Apr-2019) (Revised by Peter Mazsa, 17-Aug-2021)

Ref Expression
Assertion dfsymrel3
|- ( SymRel R <-> ( A. x A. y ( x R y -> y R x ) /\ Rel R ) )

Proof

Step Hyp Ref Expression
1 dfsymrel2
 |-  ( SymRel R <-> ( `' R C_ R /\ Rel R ) )
2 cnvsym
 |-  ( `' R C_ R <-> A. x A. y ( x R y -> y R x ) )
3 2 anbi1i
 |-  ( ( `' R C_ R /\ Rel R ) <-> ( A. x A. y ( x R y -> y R x ) /\ Rel R ) )
4 1 3 bitri
 |-  ( SymRel R <-> ( A. x A. y ( x R y -> y R x ) /\ Rel R ) )