Description: Symmetric relation implies that the domain and the range are equal. (Contributed by Peter Mazsa, 29-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | symrelim | |- ( SymRel R -> dom R = ran R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rncnv | |- ran `' R = dom R |
|
2 | dfsymrel4 | |- ( SymRel R <-> ( `' R = R /\ Rel R ) ) |
|
3 | 2 | simplbi | |- ( SymRel R -> `' R = R ) |
4 | 3 | rneqd | |- ( SymRel R -> ran `' R = ran R ) |
5 | 1 4 | eqtr3id | |- ( SymRel R -> dom R = ran R ) |