Metamath Proof Explorer


Theorem symrelim

Description: Symmetric relation implies that the domain and the range are equal. (Contributed by Peter Mazsa, 29-Dec-2021)

Ref Expression
Assertion symrelim ( SymRel 𝑅 → dom 𝑅 = ran 𝑅 )

Proof

Step Hyp Ref Expression
1 rncnv ran 𝑅 = dom 𝑅
2 dfsymrel4 ( SymRel 𝑅 ↔ ( 𝑅 = 𝑅 ∧ Rel 𝑅 ) )
3 2 simplbi ( SymRel 𝑅 𝑅 = 𝑅 )
4 3 rneqd ( SymRel 𝑅 → ran 𝑅 = ran 𝑅 )
5 1 4 eqtr3id ( SymRel 𝑅 → dom 𝑅 = ran 𝑅 )