Metamath Proof Explorer
Description: Symmetric relation implies that the domain and the range are equal.
(Contributed by Peter Mazsa, 29-Dec-2021)
|
|
Ref |
Expression |
|
Assertion |
symrelim |
⊢ ( SymRel 𝑅 → dom 𝑅 = ran 𝑅 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rncnv |
⊢ ran ◡ 𝑅 = dom 𝑅 |
2 |
|
dfsymrel4 |
⊢ ( SymRel 𝑅 ↔ ( ◡ 𝑅 = 𝑅 ∧ Rel 𝑅 ) ) |
3 |
2
|
simplbi |
⊢ ( SymRel 𝑅 → ◡ 𝑅 = 𝑅 ) |
4 |
3
|
rneqd |
⊢ ( SymRel 𝑅 → ran ◡ 𝑅 = ran 𝑅 ) |
5 |
1 4
|
eqtr3id |
⊢ ( SymRel 𝑅 → dom 𝑅 = ran 𝑅 ) |