Metamath Proof Explorer


Theorem symrelcoss

Description: The class of cosets by R is symmetric. (Contributed by Peter Mazsa, 20-Dec-2021)

Ref Expression
Assertion symrelcoss SymRel ≀ 𝑅

Proof

Step Hyp Ref Expression
1 symrelcoss2 ( 𝑅 ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅 )
2 dfsymrel2 ( SymRel ≀ 𝑅 ↔ ( 𝑅 ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅 ) )
3 1 2 mpbir SymRel ≀ 𝑅