Metamath Proof Explorer


Theorem symrelcoss2

Description: The class of cosets by R is symmetric, see dfsymrel2 . (Contributed by Peter Mazsa, 27-Dec-2018)

Ref Expression
Assertion symrelcoss2 ( 𝑅 ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅 )

Proof

Step Hyp Ref Expression
1 symrelcoss3 ( ∀ 𝑥𝑦 ( 𝑥𝑅 𝑦𝑦𝑅 𝑥 ) ∧ Rel ≀ 𝑅 )
2 cnvsym ( 𝑅 ⊆ ≀ 𝑅 ↔ ∀ 𝑥𝑦 ( 𝑥𝑅 𝑦𝑦𝑅 𝑥 ) )
3 2 anbi1i ( ( 𝑅 ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅 ) ↔ ( ∀ 𝑥𝑦 ( 𝑥𝑅 𝑦𝑦𝑅 𝑥 ) ∧ Rel ≀ 𝑅 ) )
4 1 3 mpbir ( 𝑅 ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅 )