Description: The class of cosets by R is symmetric, see dfsymrel2 . (Contributed by Peter Mazsa, 27-Dec-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | symrelcoss2 | ⊢ ( ◡ ≀ 𝑅 ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symrelcoss3 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 ≀ 𝑅 𝑦 → 𝑦 ≀ 𝑅 𝑥 ) ∧ Rel ≀ 𝑅 ) | |
2 | cnvsym | ⊢ ( ◡ ≀ 𝑅 ⊆ ≀ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 ≀ 𝑅 𝑦 → 𝑦 ≀ 𝑅 𝑥 ) ) | |
3 | 2 | anbi1i | ⊢ ( ( ◡ ≀ 𝑅 ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅 ) ↔ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 ≀ 𝑅 𝑦 → 𝑦 ≀ 𝑅 𝑥 ) ∧ Rel ≀ 𝑅 ) ) |
4 | 1 3 | mpbir | ⊢ ( ◡ ≀ 𝑅 ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅 ) |