Metamath Proof Explorer


Theorem cossssid

Description: Equivalent expressions for the class of cosets by R to be a subset of the identity class. (Contributed by Peter Mazsa, 27-Jul-2021)

Ref Expression
Assertion cossssid ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 iss2 ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 = ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) )
2 refrelcoss2 ( ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅 )
3 2 simpli ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ⊆ ≀ 𝑅
4 eqss ( ≀ 𝑅 = ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ↔ ( ≀ 𝑅 ⊆ ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ∧ ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ⊆ ≀ 𝑅 ) )
5 3 4 mpbiran2 ( ≀ 𝑅 = ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ↔ ≀ 𝑅 ⊆ ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) )
6 1 5 bitri ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) )