Description: Equivalent expressions for the class of cosets by R to be a subset of the identity class. (Contributed by Peter Mazsa, 27-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | cossssid | ⊢ ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iss2 | ⊢ ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 = ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ) | |
2 | refrelcoss2 | ⊢ ( ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅 ) | |
3 | 2 | simpli | ⊢ ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ⊆ ≀ 𝑅 |
4 | eqss | ⊢ ( ≀ 𝑅 = ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ↔ ( ≀ 𝑅 ⊆ ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ∧ ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ⊆ ≀ 𝑅 ) ) | |
5 | 3 4 | mpbiran2 | ⊢ ( ≀ 𝑅 = ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ↔ ≀ 𝑅 ⊆ ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ) |
6 | 1 5 | bitri | ⊢ ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ) |