Description: Equivalent expressions for the class of cosets by R to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | cossssid2 | ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑥 ∀ 𝑦 ( ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-id | ⊢ I = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 = 𝑦 } | |
2 | 1 | sseq2i | ⊢ ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 = 𝑦 } ) |
3 | df-coss | ⊢ ≀ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) } | |
4 | 3 | sseq1i | ⊢ ( ≀ 𝑅 ⊆ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 = 𝑦 } ↔ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 = 𝑦 } ) |
5 | ssopab2bw | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 = 𝑦 } ↔ ∀ 𝑥 ∀ 𝑦 ( ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) | |
6 | 2 4 5 | 3bitri | ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑥 ∀ 𝑦 ( ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) |