Metamath Proof Explorer


Theorem cossssid2

Description: Equivalent expressions for the class of cosets by R to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019)

Ref Expression
Assertion cossssid2 ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑥𝑦 ( ∃ 𝑢 ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) )

Proof

Step Hyp Ref Expression
1 df-id I = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 = 𝑦 }
2 1 sseq2i ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 = 𝑦 } )
3 df-coss 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) }
4 3 sseq1i ( ≀ 𝑅 ⊆ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 = 𝑦 } ↔ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) } ⊆ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 = 𝑦 } )
5 ssopab2bw ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) } ⊆ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 = 𝑦 } ↔ ∀ 𝑥𝑦 ( ∃ 𝑢 ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) )
6 2 4 5 3bitri ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑥𝑦 ( ∃ 𝑢 ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) )