| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cossssid2 |
⊢ ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑥 ∀ 𝑦 ( ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 2 |
|
19.23v |
⊢ ( ∀ 𝑢 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 3 |
2
|
albii |
⊢ ( ∀ 𝑦 ∀ 𝑢 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ( ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 4 |
|
alcom |
⊢ ( ∀ 𝑦 ∀ 𝑢 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑢 ∀ 𝑦 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 5 |
3 4
|
bitr3i |
⊢ ( ∀ 𝑦 ( ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑢 ∀ 𝑦 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 6 |
5
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∀ 𝑢 ∀ 𝑦 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 7 |
|
alcom |
⊢ ( ∀ 𝑥 ∀ 𝑢 ∀ 𝑦 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑢 ∀ 𝑥 ∀ 𝑦 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 8 |
1 6 7
|
3bitri |
⊢ ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑢 ∀ 𝑥 ∀ 𝑦 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) |