Metamath Proof Explorer


Theorem cossssid3

Description: Equivalent expressions for the class of cosets by R to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019)

Ref Expression
Assertion cossssid3 ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑢𝑥𝑦 ( ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) )

Proof

Step Hyp Ref Expression
1 cossssid2 ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑥𝑦 ( ∃ 𝑢 ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) )
2 19.23v ( ∀ 𝑢 ( ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ∃ 𝑢 ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) )
3 2 albii ( ∀ 𝑦𝑢 ( ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ( ∃ 𝑢 ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) )
4 alcom ( ∀ 𝑦𝑢 ( ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑢𝑦 ( ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) )
5 3 4 bitr3i ( ∀ 𝑦 ( ∃ 𝑢 ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑢𝑦 ( ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) )
6 5 albii ( ∀ 𝑥𝑦 ( ∃ 𝑢 ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥𝑢𝑦 ( ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) )
7 alcom ( ∀ 𝑥𝑢𝑦 ( ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑢𝑥𝑦 ( ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) )
8 1 6 7 3bitri ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑢𝑥𝑦 ( ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) )