Step |
Hyp |
Ref |
Expression |
1 |
|
cossssid2 |
⊢ ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑥 ∀ 𝑦 ( ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) |
2 |
|
19.23v |
⊢ ( ∀ 𝑢 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) |
3 |
2
|
albii |
⊢ ( ∀ 𝑦 ∀ 𝑢 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ( ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) |
4 |
|
alcom |
⊢ ( ∀ 𝑦 ∀ 𝑢 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑢 ∀ 𝑦 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) |
5 |
3 4
|
bitr3i |
⊢ ( ∀ 𝑦 ( ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑢 ∀ 𝑦 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) |
6 |
5
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∀ 𝑢 ∀ 𝑦 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) |
7 |
|
alcom |
⊢ ( ∀ 𝑥 ∀ 𝑢 ∀ 𝑦 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑢 ∀ 𝑥 ∀ 𝑦 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) |
8 |
1 6 7
|
3bitri |
⊢ ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑢 ∀ 𝑥 ∀ 𝑦 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) |