Metamath Proof Explorer


Theorem cossssid4

Description: Equivalent expressions for the class of cosets by R to be a subset of the identity class. (Contributed by Peter Mazsa, 31-Aug-2021)

Ref Expression
Assertion cossssid4 ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑢 ∃* 𝑥 𝑢 𝑅 𝑥 )

Proof

Step Hyp Ref Expression
1 cossssid3 ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑢𝑥𝑦 ( ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) )
2 breq2 ( 𝑥 = 𝑦 → ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) )
3 2 mo4 ( ∃* 𝑥 𝑢 𝑅 𝑥 ↔ ∀ 𝑥𝑦 ( ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) )
4 3 albii ( ∀ 𝑢 ∃* 𝑥 𝑢 𝑅 𝑥 ↔ ∀ 𝑢𝑥𝑦 ( ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) )
5 1 4 bitr4i ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑢 ∃* 𝑥 𝑢 𝑅 𝑥 )