Metamath Proof Explorer


Theorem cossssid4

Description: Equivalent expressions for the class of cosets by R to be a subset of the identity class. (Contributed by Peter Mazsa, 31-Aug-2021)

Ref Expression
Assertion cossssid4 RIu*xuRx

Proof

Step Hyp Ref Expression
1 cossssid3 RIuxyuRxuRyx=y
2 breq2 x=yuRxuRy
3 2 mo4 *xuRxxyuRxuRyx=y
4 3 albii u*xuRxuxyuRxuRyx=y
5 1 4 bitr4i RIu*xuRx