Metamath Proof Explorer


Theorem cossssid4

Description: Equivalent expressions for the class of cosets by R to be a subset of the identity class. (Contributed by Peter Mazsa, 31-Aug-2021)

Ref Expression
Assertion cossssid4 R I u * x u R x

Proof

Step Hyp Ref Expression
1 cossssid3 R I u x y u R x u R y x = y
2 breq2 x = y u R x u R y
3 2 mo4 * x u R x x y u R x u R y x = y
4 3 albii u * x u R x u x y u R x u R y x = y
5 1 4 bitr4i R I u * x u R x