Metamath Proof Explorer


Theorem cossssid5

Description: Equivalent expressions for the class of cosets by R to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion cossssid5 ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑥 ∈ ran 𝑅𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ ) )

Proof

Step Hyp Ref Expression
1 cossssid4 ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑢 ∃* 𝑥 𝑢 𝑅 𝑥 )
2 ineccnvmo2 ( ∀ 𝑥 ∈ ran 𝑅𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ ) ↔ ∀ 𝑢 ∃* 𝑥 𝑢 𝑅 𝑥 )
3 1 2 bitr4i ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑥 ∈ ran 𝑅𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ ) )