Description: Equivalent expressions for the class of cosets by R to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | cossssid5 | ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑥 ∈ ran 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑦 ] ◡ 𝑅 ) = ∅ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cossssid4 | ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑢 ∃* 𝑥 𝑢 𝑅 𝑥 ) | |
2 | ineccnvmo2 | ⊢ ( ∀ 𝑥 ∈ ran 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑦 ] ◡ 𝑅 ) = ∅ ) ↔ ∀ 𝑢 ∃* 𝑥 𝑢 𝑅 𝑥 ) | |
3 | 1 2 | bitr4i | ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑥 ∈ ran 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑦 ] ◡ 𝑅 ) = ∅ ) ) |