Metamath Proof Explorer


Theorem brcosscnv

Description: A and B are cosets by converse R : a binary relation. (Contributed by Peter Mazsa, 23-Jan-2019)

Ref Expression
Assertion brcosscnv ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 𝑅 𝐵 ↔ ∃ 𝑥 ( 𝐴 𝑅 𝑥𝐵 𝑅 𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 brcoss ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 𝑅 𝐵 ↔ ∃ 𝑥 ( 𝑥 𝑅 𝐴𝑥 𝑅 𝐵 ) ) )
2 brcnvg ( ( 𝑥 ∈ V ∧ 𝐴𝑉 ) → ( 𝑥 𝑅 𝐴𝐴 𝑅 𝑥 ) )
3 2 el2v1 ( 𝐴𝑉 → ( 𝑥 𝑅 𝐴𝐴 𝑅 𝑥 ) )
4 brcnvg ( ( 𝑥 ∈ V ∧ 𝐵𝑊 ) → ( 𝑥 𝑅 𝐵𝐵 𝑅 𝑥 ) )
5 4 el2v1 ( 𝐵𝑊 → ( 𝑥 𝑅 𝐵𝐵 𝑅 𝑥 ) )
6 3 5 bi2anan9 ( ( 𝐴𝑉𝐵𝑊 ) → ( ( 𝑥 𝑅 𝐴𝑥 𝑅 𝐵 ) ↔ ( 𝐴 𝑅 𝑥𝐵 𝑅 𝑥 ) ) )
7 6 exbidv ( ( 𝐴𝑉𝐵𝑊 ) → ( ∃ 𝑥 ( 𝑥 𝑅 𝐴𝑥 𝑅 𝐵 ) ↔ ∃ 𝑥 ( 𝐴 𝑅 𝑥𝐵 𝑅 𝑥 ) ) )
8 1 7 bitrd ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 𝑅 𝐵 ↔ ∃ 𝑥 ( 𝐴 𝑅 𝑥𝐵 𝑅 𝑥 ) ) )