Description: A and B are cosets by converse R : a binary relation. (Contributed by Peter Mazsa, 12-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | brcosscnv2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≀ ◡ 𝑅 𝐵 ↔ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ≠ ∅ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcosscnv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≀ ◡ 𝑅 𝐵 ↔ ∃ 𝑥 ( 𝐴 𝑅 𝑥 ∧ 𝐵 𝑅 𝑥 ) ) ) | |
2 | ecinn0 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ≠ ∅ ↔ ∃ 𝑥 ( 𝐴 𝑅 𝑥 ∧ 𝐵 𝑅 𝑥 ) ) ) | |
3 | 1 2 | bitr4d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≀ ◡ 𝑅 𝐵 ↔ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ≠ ∅ ) ) |