Metamath Proof Explorer


Theorem ecinn0

Description: Two ways of saying that the coset of A and the coset of B have some elements in common. (Contributed by Peter Mazsa, 23-Jan-2019)

Ref Expression
Assertion ecinn0 ( ( 𝐴𝑉𝐵𝑊 ) → ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ≠ ∅ ↔ ∃ 𝑥 ( 𝐴 𝑅 𝑥𝐵 𝑅 𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 ecin0 ( ( 𝐴𝑉𝐵𝑊 ) → ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ↔ ∀ 𝑥 ( 𝐴 𝑅 𝑥 → ¬ 𝐵 𝑅 𝑥 ) ) )
2 1 necon3abid ( ( 𝐴𝑉𝐵𝑊 ) → ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ≠ ∅ ↔ ¬ ∀ 𝑥 ( 𝐴 𝑅 𝑥 → ¬ 𝐵 𝑅 𝑥 ) ) )
3 notnotb ( 𝐵 𝑅 𝑥 ↔ ¬ ¬ 𝐵 𝑅 𝑥 )
4 3 anbi2i ( ( 𝐴 𝑅 𝑥𝐵 𝑅 𝑥 ) ↔ ( 𝐴 𝑅 𝑥 ∧ ¬ ¬ 𝐵 𝑅 𝑥 ) )
5 4 exbii ( ∃ 𝑥 ( 𝐴 𝑅 𝑥𝐵 𝑅 𝑥 ) ↔ ∃ 𝑥 ( 𝐴 𝑅 𝑥 ∧ ¬ ¬ 𝐵 𝑅 𝑥 ) )
6 exanali ( ∃ 𝑥 ( 𝐴 𝑅 𝑥 ∧ ¬ ¬ 𝐵 𝑅 𝑥 ) ↔ ¬ ∀ 𝑥 ( 𝐴 𝑅 𝑥 → ¬ 𝐵 𝑅 𝑥 ) )
7 5 6 bitri ( ∃ 𝑥 ( 𝐴 𝑅 𝑥𝐵 𝑅 𝑥 ) ↔ ¬ ∀ 𝑥 ( 𝐴 𝑅 𝑥 → ¬ 𝐵 𝑅 𝑥 ) )
8 2 7 bitr4di ( ( 𝐴𝑉𝐵𝑊 ) → ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ≠ ∅ ↔ ∃ 𝑥 ( 𝐴 𝑅 𝑥𝐵 𝑅 𝑥 ) ) )