Step |
Hyp |
Ref |
Expression |
1 |
|
ecin0 |
|- ( ( A e. V /\ B e. W ) -> ( ( [ A ] R i^i [ B ] R ) = (/) <-> A. x ( A R x -> -. B R x ) ) ) |
2 |
1
|
necon3abid |
|- ( ( A e. V /\ B e. W ) -> ( ( [ A ] R i^i [ B ] R ) =/= (/) <-> -. A. x ( A R x -> -. B R x ) ) ) |
3 |
|
notnotb |
|- ( B R x <-> -. -. B R x ) |
4 |
3
|
anbi2i |
|- ( ( A R x /\ B R x ) <-> ( A R x /\ -. -. B R x ) ) |
5 |
4
|
exbii |
|- ( E. x ( A R x /\ B R x ) <-> E. x ( A R x /\ -. -. B R x ) ) |
6 |
|
exanali |
|- ( E. x ( A R x /\ -. -. B R x ) <-> -. A. x ( A R x -> -. B R x ) ) |
7 |
5 6
|
bitri |
|- ( E. x ( A R x /\ B R x ) <-> -. A. x ( A R x -> -. B R x ) ) |
8 |
2 7
|
bitr4di |
|- ( ( A e. V /\ B e. W ) -> ( ( [ A ] R i^i [ B ] R ) =/= (/) <-> E. x ( A R x /\ B R x ) ) ) |