Metamath Proof Explorer


Theorem ecinn0

Description: Two ways of saying that the coset of A and the coset of B have some elements in common. (Contributed by Peter Mazsa, 23-Jan-2019)

Ref Expression
Assertion ecinn0 AVBWARBRxARxBRx

Proof

Step Hyp Ref Expression
1 ecin0 AVBWARBR=xARx¬BRx
2 1 necon3abid AVBWARBR¬xARx¬BRx
3 notnotb BRx¬¬BRx
4 3 anbi2i ARxBRxARx¬¬BRx
5 4 exbii xARxBRxxARx¬¬BRx
6 exanali xARx¬¬BRx¬xARx¬BRx
7 5 6 bitri xARxBRx¬xARx¬BRx
8 2 7 bitr4di AVBWARBRxARxBRx