Metamath Proof Explorer


Theorem ecin0

Description: Two ways of saying that the coset of A and the coset of B have no elements in common. (Contributed by Peter Mazsa, 1-Dec-2018)

Ref Expression
Assertion ecin0 A V B W A R B R = x A R x ¬ B R x

Proof

Step Hyp Ref Expression
1 disj1 A R B R = x x A R ¬ x B R
2 elecg x V A V x A R A R x
3 2 el2v1 A V x A R A R x
4 3 adantr A V B W x A R A R x
5 elecALTV B W x V x B R B R x
6 5 elvd B W x B R B R x
7 6 adantl A V B W x B R B R x
8 7 notbid A V B W ¬ x B R ¬ B R x
9 4 8 imbi12d A V B W x A R ¬ x B R A R x ¬ B R x
10 9 albidv A V B W x x A R ¬ x B R x A R x ¬ B R x
11 1 10 syl5bb A V B W A R B R = x A R x ¬ B R x