Metamath Proof Explorer


Theorem ecin0

Description: Two ways of saying that the coset of A and the coset of B have no elements in common. (Contributed by Peter Mazsa, 1-Dec-2018)

Ref Expression
Assertion ecin0 AVBWARBR=xARx¬BRx

Proof

Step Hyp Ref Expression
1 disj1 ARBR=xxAR¬xBR
2 elecg xVAVxARARx
3 2 el2v1 AVxARARx
4 3 adantr AVBWxARARx
5 elecALTV BWxVxBRBRx
6 5 elvd BWxBRBRx
7 6 adantl AVBWxBRBRx
8 7 notbid AVBW¬xBR¬BRx
9 4 8 imbi12d AVBWxAR¬xBRARx¬BRx
10 9 albidv AVBWxxAR¬xBRxARx¬BRx
11 1 10 bitrid AVBWARBR=xARx¬BRx