Metamath Proof Explorer


Theorem ineleq

Description: Equivalence of restricted universal quantifications. (Contributed by Peter Mazsa, 29-May-2018)

Ref Expression
Assertion ineleq x A y B x = y C D = x A z y B z C z D x = y

Proof

Step Hyp Ref Expression
1 orcom x = y C D = C D = x = y
2 df-or C D = x = y ¬ C D = x = y
3 neq0 ¬ C D = z z C D
4 elin z C D z C z D
5 4 exbii z z C D z z C z D
6 3 5 bitri ¬ C D = z z C z D
7 6 imbi1i ¬ C D = x = y z z C z D x = y
8 19.23v z z C z D x = y z z C z D x = y
9 7 8 bitr4i ¬ C D = x = y z z C z D x = y
10 1 2 9 3bitri x = y C D = z z C z D x = y
11 10 ralbii y B x = y C D = y B z z C z D x = y
12 ralcom4 y B z z C z D x = y z y B z C z D x = y
13 11 12 bitri y B x = y C D = z y B z C z D x = y
14 13 ralbii x A y B x = y C D = x A z y B z C z D x = y