Metamath Proof Explorer


Theorem inecmo

Description: Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 29-May-2018)

Ref Expression
Hypothesis inecmo.1 x=yB=C
Assertion inecmo RelRxAyAx=yBRCR=z*xABRz

Proof

Step Hyp Ref Expression
1 inecmo.1 x=yB=C
2 ineleq xAyAx=yBRCR=xAzyAzBRzCRx=y
3 ralcom4 xAzyAzBRzCRx=yzxAyAzBRzCRx=y
4 2 3 bitri xAyAx=yBRCR=zxAyAzBRzCRx=y
5 1 breq1d x=yBRzCRz
6 5 rmo4 *xABRzxAyABRzCRzx=y
7 relelec RelRzBRBRz
8 relelec RelRzCRCRz
9 7 8 anbi12d RelRzBRzCRBRzCRz
10 9 imbi1d RelRzBRzCRx=yBRzCRzx=y
11 10 2ralbidv RelRxAyAzBRzCRx=yxAyABRzCRzx=y
12 6 11 bitr4id RelR*xABRzxAyAzBRzCRx=y
13 12 albidv RelRz*xABRzzxAyAzBRzCRx=y
14 4 13 bitr4id RelRxAyAx=yBRCR=z*xABRz