Metamath Proof Explorer


Theorem inecmo

Description: Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 29-May-2018)

Ref Expression
Hypothesis inecmo.1 x = y B = C
Assertion inecmo Rel R x A y A x = y B R C R = z * x A B R z

Proof

Step Hyp Ref Expression
1 inecmo.1 x = y B = C
2 ineleq x A y A x = y B R C R = x A z y A z B R z C R x = y
3 ralcom4 x A z y A z B R z C R x = y z x A y A z B R z C R x = y
4 2 3 bitri x A y A x = y B R C R = z x A y A z B R z C R x = y
5 1 breq1d x = y B R z C R z
6 5 rmo4 * x A B R z x A y A B R z C R z x = y
7 relelec Rel R z B R B R z
8 relelec Rel R z C R C R z
9 7 8 anbi12d Rel R z B R z C R B R z C R z
10 9 imbi1d Rel R z B R z C R x = y B R z C R z x = y
11 10 2ralbidv Rel R x A y A z B R z C R x = y x A y A B R z C R z x = y
12 6 11 bitr4id Rel R * x A B R z x A y A z B R z C R x = y
13 12 albidv Rel R z * x A B R z z x A y A z B R z C R x = y
14 4 13 bitr4id Rel R x A y A x = y B R C R = z * x A B R z