Metamath Proof Explorer


Theorem inecmo2

Description: Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 29-May-2018) (Revised by Peter Mazsa, 2-Sep-2021)

Ref Expression
Assertion inecmo2 uAvAu=vuRvR=RelRx*uAuRxRelR

Proof

Step Hyp Ref Expression
1 id u=vu=v
2 1 inecmo RelRuAvAu=vuRvR=x*uAuRx
3 2 pm5.32ri uAvAu=vuRvR=RelRx*uAuRxRelR