Metamath Proof Explorer


Theorem inecmo2

Description: Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 29-May-2018) (Revised by Peter Mazsa, 2-Sep-2021)

Ref Expression
Assertion inecmo2 ( ( ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) ↔ ( ∀ 𝑥 ∃* 𝑢𝐴 𝑢 𝑅 𝑥 ∧ Rel 𝑅 ) )

Proof

Step Hyp Ref Expression
1 id ( 𝑢 = 𝑣𝑢 = 𝑣 )
2 1 inecmo ( Rel 𝑅 → ( ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ↔ ∀ 𝑥 ∃* 𝑢𝐴 𝑢 𝑅 𝑥 ) )
3 2 pm5.32ri ( ( ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) ↔ ( ∀ 𝑥 ∃* 𝑢𝐴 𝑢 𝑅 𝑥 ∧ Rel 𝑅 ) )