| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inecmo.1 |
⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) |
| 2 |
|
ineleq |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( [ 𝐵 ] 𝑅 ∩ [ 𝐶 ] 𝑅 ) = ∅ ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∀ 𝑦 ∈ 𝐴 ( ( 𝑧 ∈ [ 𝐵 ] 𝑅 ∧ 𝑧 ∈ [ 𝐶 ] 𝑅 ) → 𝑥 = 𝑦 ) ) |
| 3 |
|
ralcom4 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∀ 𝑦 ∈ 𝐴 ( ( 𝑧 ∈ [ 𝐵 ] 𝑅 ∧ 𝑧 ∈ [ 𝐶 ] 𝑅 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑧 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑧 ∈ [ 𝐵 ] 𝑅 ∧ 𝑧 ∈ [ 𝐶 ] 𝑅 ) → 𝑥 = 𝑦 ) ) |
| 4 |
2 3
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( [ 𝐵 ] 𝑅 ∩ [ 𝐶 ] 𝑅 ) = ∅ ) ↔ ∀ 𝑧 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑧 ∈ [ 𝐵 ] 𝑅 ∧ 𝑧 ∈ [ 𝐶 ] 𝑅 ) → 𝑥 = 𝑦 ) ) |
| 5 |
1
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 𝑅 𝑧 ↔ 𝐶 𝑅 𝑧 ) ) |
| 6 |
5
|
rmo4 |
⊢ ( ∃* 𝑥 ∈ 𝐴 𝐵 𝑅 𝑧 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐵 𝑅 𝑧 ∧ 𝐶 𝑅 𝑧 ) → 𝑥 = 𝑦 ) ) |
| 7 |
|
relelec |
⊢ ( Rel 𝑅 → ( 𝑧 ∈ [ 𝐵 ] 𝑅 ↔ 𝐵 𝑅 𝑧 ) ) |
| 8 |
|
relelec |
⊢ ( Rel 𝑅 → ( 𝑧 ∈ [ 𝐶 ] 𝑅 ↔ 𝐶 𝑅 𝑧 ) ) |
| 9 |
7 8
|
anbi12d |
⊢ ( Rel 𝑅 → ( ( 𝑧 ∈ [ 𝐵 ] 𝑅 ∧ 𝑧 ∈ [ 𝐶 ] 𝑅 ) ↔ ( 𝐵 𝑅 𝑧 ∧ 𝐶 𝑅 𝑧 ) ) ) |
| 10 |
9
|
imbi1d |
⊢ ( Rel 𝑅 → ( ( ( 𝑧 ∈ [ 𝐵 ] 𝑅 ∧ 𝑧 ∈ [ 𝐶 ] 𝑅 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝐵 𝑅 𝑧 ∧ 𝐶 𝑅 𝑧 ) → 𝑥 = 𝑦 ) ) ) |
| 11 |
10
|
2ralbidv |
⊢ ( Rel 𝑅 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑧 ∈ [ 𝐵 ] 𝑅 ∧ 𝑧 ∈ [ 𝐶 ] 𝑅 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐵 𝑅 𝑧 ∧ 𝐶 𝑅 𝑧 ) → 𝑥 = 𝑦 ) ) ) |
| 12 |
6 11
|
bitr4id |
⊢ ( Rel 𝑅 → ( ∃* 𝑥 ∈ 𝐴 𝐵 𝑅 𝑧 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑧 ∈ [ 𝐵 ] 𝑅 ∧ 𝑧 ∈ [ 𝐶 ] 𝑅 ) → 𝑥 = 𝑦 ) ) ) |
| 13 |
12
|
albidv |
⊢ ( Rel 𝑅 → ( ∀ 𝑧 ∃* 𝑥 ∈ 𝐴 𝐵 𝑅 𝑧 ↔ ∀ 𝑧 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑧 ∈ [ 𝐵 ] 𝑅 ∧ 𝑧 ∈ [ 𝐶 ] 𝑅 ) → 𝑥 = 𝑦 ) ) ) |
| 14 |
4 13
|
bitr4id |
⊢ ( Rel 𝑅 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( [ 𝐵 ] 𝑅 ∩ [ 𝐶 ] 𝑅 ) = ∅ ) ↔ ∀ 𝑧 ∃* 𝑥 ∈ 𝐴 𝐵 𝑅 𝑧 ) ) |