Metamath Proof Explorer


Theorem inecmo2

Description: Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 29-May-2018) (Revised by Peter Mazsa, 2-Sep-2021)

Ref Expression
Assertion inecmo2
|- ( ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ Rel R ) <-> ( A. x E* u e. A u R x /\ Rel R ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( u = v -> u = v )
2 1 inecmo
 |-  ( Rel R -> ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) <-> A. x E* u e. A u R x ) )
3 2 pm5.32ri
 |-  ( ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ Rel R ) <-> ( A. x E* u e. A u R x /\ Rel R ) )