Metamath Proof Explorer


Theorem brcosscnv2

Description: A and B are cosets by converse R : a binary relation. (Contributed by Peter Mazsa, 12-Mar-2019)

Ref Expression
Assertion brcosscnv2
|- ( ( A e. V /\ B e. W ) -> ( A ,~ `' R B <-> ( [ A ] R i^i [ B ] R ) =/= (/) ) )

Proof

Step Hyp Ref Expression
1 brcosscnv
 |-  ( ( A e. V /\ B e. W ) -> ( A ,~ `' R B <-> E. x ( A R x /\ B R x ) ) )
2 ecinn0
 |-  ( ( A e. V /\ B e. W ) -> ( ( [ A ] R i^i [ B ] R ) =/= (/) <-> E. x ( A R x /\ B R x ) ) )
3 1 2 bitr4d
 |-  ( ( A e. V /\ B e. W ) -> ( A ,~ `' R B <-> ( [ A ] R i^i [ B ] R ) =/= (/) ) )