Step |
Hyp |
Ref |
Expression |
1 |
|
ecxrn |
|- ( A e. V -> [ A ] ( R |X. S ) = { <. x , y >. | ( A R x /\ A S y ) } ) |
2 |
|
ecxrn |
|- ( B e. W -> [ B ] ( R |X. S ) = { <. x , y >. | ( B R x /\ B S y ) } ) |
3 |
1 2
|
ineqan12d |
|- ( ( A e. V /\ B e. W ) -> ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) = ( { <. x , y >. | ( A R x /\ A S y ) } i^i { <. x , y >. | ( B R x /\ B S y ) } ) ) |
4 |
|
inopab |
|- ( { <. x , y >. | ( A R x /\ A S y ) } i^i { <. x , y >. | ( B R x /\ B S y ) } ) = { <. x , y >. | ( ( A R x /\ A S y ) /\ ( B R x /\ B S y ) ) } |
5 |
3 4
|
eqtrdi |
|- ( ( A e. V /\ B e. W ) -> ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) = { <. x , y >. | ( ( A R x /\ A S y ) /\ ( B R x /\ B S y ) ) } ) |
6 |
|
an4 |
|- ( ( ( A R x /\ A S y ) /\ ( B R x /\ B S y ) ) <-> ( ( A R x /\ B R x ) /\ ( A S y /\ B S y ) ) ) |
7 |
6
|
opabbii |
|- { <. x , y >. | ( ( A R x /\ A S y ) /\ ( B R x /\ B S y ) ) } = { <. x , y >. | ( ( A R x /\ B R x ) /\ ( A S y /\ B S y ) ) } |
8 |
5 7
|
eqtrdi |
|- ( ( A e. V /\ B e. W ) -> ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) = { <. x , y >. | ( ( A R x /\ B R x ) /\ ( A S y /\ B S y ) ) } ) |
9 |
8
|
neeq1d |
|- ( ( A e. V /\ B e. W ) -> ( ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) =/= (/) <-> { <. x , y >. | ( ( A R x /\ B R x ) /\ ( A S y /\ B S y ) ) } =/= (/) ) ) |
10 |
|
opabn0 |
|- ( { <. x , y >. | ( ( A R x /\ B R x ) /\ ( A S y /\ B S y ) ) } =/= (/) <-> E. x E. y ( ( A R x /\ B R x ) /\ ( A S y /\ B S y ) ) ) |
11 |
|
exdistrv |
|- ( E. x E. y ( ( A R x /\ B R x ) /\ ( A S y /\ B S y ) ) <-> ( E. x ( A R x /\ B R x ) /\ E. y ( A S y /\ B S y ) ) ) |
12 |
10 11
|
bitri |
|- ( { <. x , y >. | ( ( A R x /\ B R x ) /\ ( A S y /\ B S y ) ) } =/= (/) <-> ( E. x ( A R x /\ B R x ) /\ E. y ( A S y /\ B S y ) ) ) |
13 |
9 12
|
bitrdi |
|- ( ( A e. V /\ B e. W ) -> ( ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) =/= (/) <-> ( E. x ( A R x /\ B R x ) /\ E. y ( A S y /\ B S y ) ) ) ) |
14 |
|
brcosscnv2 |
|- ( ( A e. V /\ B e. W ) -> ( A ,~ `' ( R |X. S ) B <-> ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) =/= (/) ) ) |
15 |
|
brcosscnv |
|- ( ( A e. V /\ B e. W ) -> ( A ,~ `' R B <-> E. x ( A R x /\ B R x ) ) ) |
16 |
|
brcosscnv |
|- ( ( A e. V /\ B e. W ) -> ( A ,~ `' S B <-> E. y ( A S y /\ B S y ) ) ) |
17 |
15 16
|
anbi12d |
|- ( ( A e. V /\ B e. W ) -> ( ( A ,~ `' R B /\ A ,~ `' S B ) <-> ( E. x ( A R x /\ B R x ) /\ E. y ( A S y /\ B S y ) ) ) ) |
18 |
13 14 17
|
3bitr4d |
|- ( ( A e. V /\ B e. W ) -> ( A ,~ `' ( R |X. S ) B <-> ( A ,~ `' R B /\ A ,~ `' S B ) ) ) |