| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elecxrn |
|- ( A e. V -> ( x e. [ A ] ( R |X. S ) <-> E. y E. z ( x = <. y , z >. /\ A R y /\ A S z ) ) ) |
| 2 |
|
3anass |
|- ( ( x = <. y , z >. /\ A R y /\ A S z ) <-> ( x = <. y , z >. /\ ( A R y /\ A S z ) ) ) |
| 3 |
2
|
2exbii |
|- ( E. y E. z ( x = <. y , z >. /\ A R y /\ A S z ) <-> E. y E. z ( x = <. y , z >. /\ ( A R y /\ A S z ) ) ) |
| 4 |
1 3
|
bitrdi |
|- ( A e. V -> ( x e. [ A ] ( R |X. S ) <-> E. y E. z ( x = <. y , z >. /\ ( A R y /\ A S z ) ) ) ) |
| 5 |
|
elopab |
|- ( x e. { <. y , z >. | ( A R y /\ A S z ) } <-> E. y E. z ( x = <. y , z >. /\ ( A R y /\ A S z ) ) ) |
| 6 |
4 5
|
bitr4di |
|- ( A e. V -> ( x e. [ A ] ( R |X. S ) <-> x e. { <. y , z >. | ( A R y /\ A S z ) } ) ) |
| 7 |
6
|
eqrdv |
|- ( A e. V -> [ A ] ( R |X. S ) = { <. y , z >. | ( A R y /\ A S z ) } ) |