Step |
Hyp |
Ref |
Expression |
1 |
|
brcoss |
|- ( ( A e. V /\ B e. W ) -> ( A ,~ `' R B <-> E. x ( x `' R A /\ x `' R B ) ) ) |
2 |
|
brcnvg |
|- ( ( x e. _V /\ A e. V ) -> ( x `' R A <-> A R x ) ) |
3 |
2
|
el2v1 |
|- ( A e. V -> ( x `' R A <-> A R x ) ) |
4 |
|
brcnvg |
|- ( ( x e. _V /\ B e. W ) -> ( x `' R B <-> B R x ) ) |
5 |
4
|
el2v1 |
|- ( B e. W -> ( x `' R B <-> B R x ) ) |
6 |
3 5
|
bi2anan9 |
|- ( ( A e. V /\ B e. W ) -> ( ( x `' R A /\ x `' R B ) <-> ( A R x /\ B R x ) ) ) |
7 |
6
|
exbidv |
|- ( ( A e. V /\ B e. W ) -> ( E. x ( x `' R A /\ x `' R B ) <-> E. x ( A R x /\ B R x ) ) ) |
8 |
1 7
|
bitrd |
|- ( ( A e. V /\ B e. W ) -> ( A ,~ `' R B <-> E. x ( A R x /\ B R x ) ) ) |